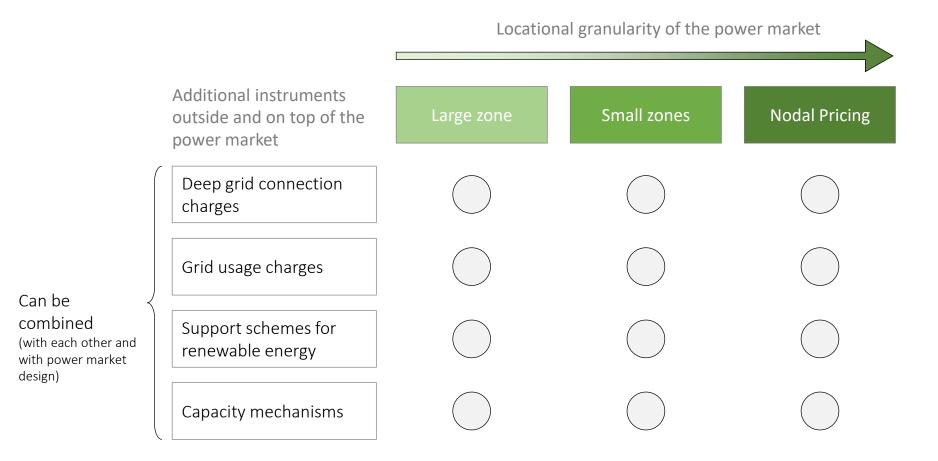

Optimal generation investment under suboptimal dispatch

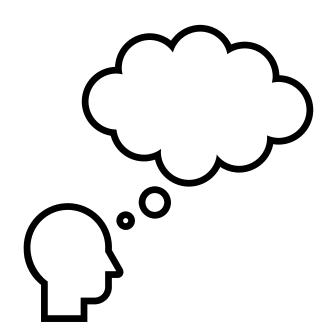
A bilevel equilibrium model of optimal investment incentives in zonal markets

Anselm Eicke


Where to place new generators?

- In many systems, the cost of power generation is lowest at sites with high network costs
- Trade-off between the cost of power generation and transmission
- Economic approach: the internalization of network costs leads to efficient investment signals for generators and consumers

Locational incentives: power market and extra instruments

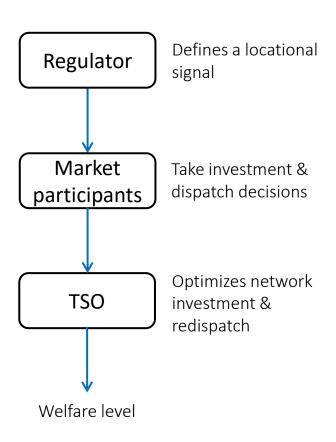


Research questions

Research questions

- 1. What is the welfare-optimal distribution of generators given the suboptimal dispatch incentives of a zonal market?
- 2. How must location-specific price signals be designed to lead to this distribution?

Methodological challenge


- Zonal system models do to not account for network costs
- *Nodal system models* account for network costs but their dispatch and price sensitive electricity demand differs from the one in zonal markets.

Model formulation

Stackelberg game of regulator and market participants

Outer Problem: Regulator / TSO (Leader)

Objective: Welfare maximization

Spatial resolution: Subzones / nodes

Main decision variables:

- Locational signal (per technology and per node)
- Network investment
- Redispatch

Inner problem: Market participants (Follower)

Objective: Profit maximization

Spatial resolution: Bidding zone

Main decision variables:

- Investment and dispatch decisions
- Level of electricity consumption

Mathematical solution strategy

Outer Problem: Regulator (Leader)

Objective: Welfare maximization

Spatial resolution: Subzones / nodes

Main decision variables:

- Locational signal (per technology and per node)
- Network investment
- Redispatch

Inner problem: Market participants (Follower)

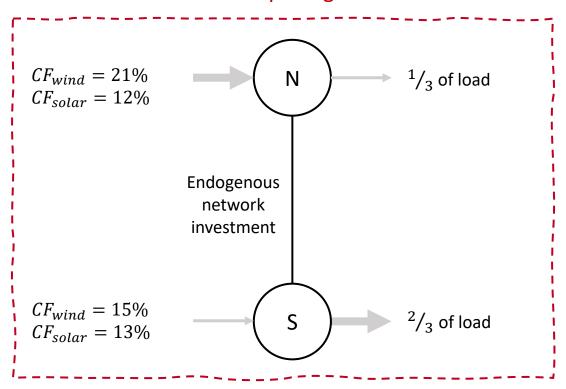
Objective: Profit maximization

Spatial resolution: Bidding zone

Main decision variables:

- Investment and dispatch decisions
- Level of electricity consumption

- Replace the inner problem by its optimality conditions (KKT) → resulting model is a (non-linear)
 MPEC
- Linearize complementarity conditions with big-M approach
- 3. Relax non-linearity in SWF: $R_{t,z,n}^{down} \cdot \left(\lambda_t c_{z,n}^{var}\right)$ \rightarrow the resulting model is a MIQP
- 4. Use the starting points from the MIQP to (hopefully) find the global optimum of the MPEC



Numerical example

Model setup: Generation and demand

Uniform pricing zone

- 48 timesteps with availability of wind and solar
- Short-term price-elasticity of demand: -0.25

Model setup: Costs

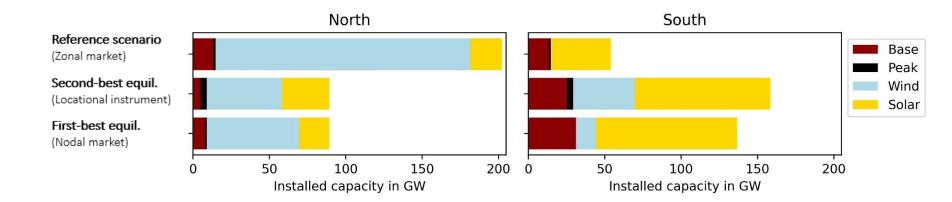
c^{var} c^{fix} €/MWh€/kW per aBase5595Peak8032Onshore wind-85Solar-50				
Base 55 95 Peak 80 32 Onshore wind - 85		c^{var}	c^{fix}	
Peak 80 32 Onshore wind - 85		€/MWh	€/ kW per a	
Onshore wind - 85	Base	55	95	
	Peak	80	32	
Solar - 50	Onshore wind	-	85	
	Solar	-	50	

Generation costs:

$$\begin{split} & \sum_{tec,n} \left(P_{tec,n} \cdot c_{tec,n}^{fix} + P_{tec,n}^2 \cdot m_C \right) \\ & + \sum_{t,tec,n} \left(G_{t,tec,n} \cdot c_{tec,n}^{en} + G_{t,tec,n}^2 \cdot m_G \right) \end{split}$$

- Linearly increasing marginal capacity costs account for a reduced profitability of sites at increasing deployment
- These increasing capacity costs enable a locational steering through price signals

Model results


Model results: Cost and welfare analysis

- Locational signals increase welfare by about 5 % compared to a zonal market without locational signals
- This is a significant part of the benefits of a nodal market featuring a welfare improvement of 9 % compared to a zonal market.
- Locational signals strongly reduce network costs but lead to slightly higher generation costs. The signals also increase electricity prices and therefore lower the consumer surplus
- Even with locational signals, zonal markets lack adequate dispatch incentives and local incentives for demand flexibility

Costs and Welfare (in M€)	Network cost	Generation cost	Gross consumer surplus	Welfare
Reference scenario (Zonal market)	80	308	1,000	614
Second-best equil. (Locational instrument)	8	324	990	648
First-best equil. (Nodal market)	4	328	998	668

Model results: Placement of generators

- The welfare-maximising regional distribution of generators and the capacity mix differs by market design
- Compared to the nodal benchmark, additional redispatch costs in zonal markets make a siting of generators closer to demand centers more attractive
- Locational signals in zonal markets (both for generation and demand) cannot be calculated with a nodal model a bilevel model is required instead

Model results: Welfare-optimal locational signals

- The optimal locational signal is both location- and technology-specific
- The estimated locational signal is an indicator for the network costs of each technology under zonal dispatch. Driven by generation profiles, some technologies result in higher network costs than others.
- Some technologies even feature a negative locational signal
- The locational signals are specific for a power system

	North		South		C_{fix}
	Signal (€/kW)	Share of $C_{ m fix}$ (%)	Signal (€/kW)	Share of $C_{ m fix}$ (%)	(€/kW)
base	206 €	40%	187€	36%	521€
peak	20 €	11%	21€	12%	175 €
solar	7€	3%	12€	5%	274 €
wind	181€	39%	-17 €	-4%	466 €

Summary and policy recommendations

- The numerical example indicates a significant cost-saving potential of locational signals in zonal markets
- Optimal locational signals differ between locations and technologies. This is not the case in most real-world instruments
- Model results are an upper bound for the welfare gains locational signals will remain imperfect in practice due to limited data availability and foresight.
- But even imperfect signals are likely to outperform a setting without any locational incentives
- The welfare-optimal placement of generators in a zonal market differs from the nodal market outcome – a bilevel model is thus required

Thank you for your attention

More on locational instruments in our OA article: Locational Investment Signals: How to Steer the Siting of New Generation Capacity in Power Systems?

Contact
Anselm Eicke
eicke@hertie-school.org

